

Decoding Plant Evolutionary Adaptation Mechanisms: Integrating Multi-omics and Artificial Intelligence Predictive Models to Construct a Comprehensive Framework for Climate-Resilient Ecosystems

Jonathan Lefebvre

Department of Agricultural Sciences, Faculty of Agricultural, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, Canada

Abstract

Accelerating climate change poses unprecedented challenges to global plant biodiversity and agricultural security. Understanding and harnessing the inherent adaptive capacity of plants is therefore an urgent scientific and societal imperative. This article synthesizes cutting-edge research to argue that a siloed approach to studying plant adaptation—focusing solely on genetics, physiology, or ecology—is insufficient to decode the complex, multi-layered mechanisms underpinning climate resilience. We propose a novel, integrative framework that systematically converges multi-omics technologies (genomics, transcriptomics, proteomics, metabolomics, epigenomics) with advanced artificial intelligence (AI) and machine learning (ML) predictive models. The framework is designed to move beyond correlation to reveal causation, mapping the intricate pathways from genetic variation and epigenetic regulation to phenotypic plasticity and fitness outcomes in changing environments. We elucidate core evolutionary adaptation mechanisms, including adaptive trait evolution, genomic signatures of selection, and the role of the plant microbiome. A dedicated analytical table evaluates the synergistic power of specific omics-AI pairings across research scenarios. The article further explores applied pathways for translating this knowledge into climate-smart crop breeding, ecological restoration genomics, and the design of climate-resilient agricultural and natural ecosystems. Finally, we address critical challenges—data standardization, model interpretability, and ethical use of genetic resources—and chart future directions for a truly predictive and engineering-oriented science of plant adaptation. This integrated perspective aims to catalyze a paradigm shift, enabling the proactive development of ecosystems capable of withstanding the climatic uncertainties of the 21st century.

Keywords

Plant Evolutionary Adaptation, Multi-omics Integration, Artificial Intelligence, Predictive Modeling, Climate Resilience, Genomics, Ecological Genomics, Stress Physiology

1. Introduction: The Adaptive Imperative in the Anthropocene

The stability of terrestrial ecosystems and the foundation of global food systems rest upon the adaptive capacity of plants. In the Anthropocene, characterized by rapid, human-induced climate change, plants face a confluence of abiotic stresses—including intensified drought, heatwaves, flooding, and salinity—alongside shifting biotic interactions. The rate of environmental change often exceeds the natural adaptive pace of many plant species, leading to predicted range contractions, biodiversity loss, and crop yield instability [1]. To mitigate these outcomes, a profound, mechanistic understanding of how plants adapt evolutionarily is no longer a purely academic pursuit but a critical necessity.

Traditional approaches to studying plant adaptation have yielded invaluable insights but are inherently limited. Quantitative genetics links phenotypic variation to genomic regions, yet often struggles with complex polygenic traits. Physiological ecology describes functional responses but may lack molecular resolution. Ecological genomics identifies candidate genes but can be context-dependent. These disciplines have largely advanced in parallel, creating a fragmented knowledge landscape. The central thesis of this article is that a transformative leap forward requires the convergent integration of multi-omics scales with the predictive power of artificial intelligence.

Multi-omics technologies provide a holistic, systems-level view of the molecular cascades underlying adaptation, from DNA sequence variation (genomics) and gene expression dynamics (transcriptomics) to protein function (proteomics) and biochemical end-products (metabolomics), all modulated by epigenetic marks (epigenomics). Concurrently, AI and ML excel at identifying complex, non-linear patterns within high-dimensional, heterogeneous datasets—precisely the data generated by multi-omics studies. When integrated, they form a powerful discovery engine: omics data fuel AI models, which in turn generate testable hypotheses about adaptive mechanisms, predict phenotypic outcomes from genotypic data, and optimize selection strategies [2].

This article articulates a comprehensive framework for this integration. We first review the core evolutionary and physiological mechanisms of plant adaptation to climatic stresses. We then detail the contributions of individual omics

layers and AI methodologies. A central piece is the presentation of a synthesized framework, illustrated with a strategic table, showing how specific omics-AI synergies can be deployed to solve key problems in adaptation research. We discuss translational applications in agriculture and conservation, address ethical and technical challenges, and conclude by envisioning a future where predictive adaptation science enables the proactive stewardship of resilient ecosystems [3].

2. Foundational Mechanisms of Plant Evolutionary Adaptation

Plant adaptation operates across temporal scales, from rapid phenotypic plasticity to long-term genetic evolution. Key mechanisms include:

2.1 Genetic Innovation and Adaptive Trait Evolution

At the heart of evolutionary adaptation is heritable genetic variation. This includes single nucleotide polymorphisms (SNPs), copy number variations (CNVs), and structural variants that can alter gene function or regulation. "Adaptive traits" such as deeper root architectures (for drought), altered flowering time (for temperature shifts), or enhanced photosynthetic heat tolerance are often under polygenic control [4]. Genome-wide association studies (GWAS) and selection sweep analyses aim to identify the genomic loci underlying these traits, revealing signatures of natural selection in wild populations or artificial selection in crops.

Molecular Bases and Evolutionary Dynamics: The evolution of adaptive traits relies not only on *de novo* mutations but frequently on the re-sorting and frequency adjustment of pre-existing genetic variation. In drought adaptation, for instance, genes involved in the abscisic acid (ABA) signaling pathway (e.g., the *PYL/RCAR* receptor family, *SnRK2* kinases) often exhibit rich structural variation and promoter diversity in natural populations. These variations fine-tune stomatal closure sensitivity by altering gene expression levels or protein activity. Genome-wide selective sweep analyses have revealed that many adaptive signals are not located in protein-coding regions but are enriched in cis-regulatory elements (e.g., enhancers, suppressors). This indicates that natural selection often shapes complex traits by adjusting the spatiotemporal regulatory networks of gene expression, rather than directly altering protein function itself. Furthermore, gene duplication and functional divergence (e.g., the Heat Shock Protein/HSP family) and horizontal gene transfer (particularly at the plant-microbe interface) provide crucial raw genetic material for adaptive evolution [5].

2.2 Phenotypic Plasticity: The First Line of Defense

Phenotypic plasticity—the ability of a single genotype to produce different phenotypes in response to environmental cues—is a crucial short-term adaptive strategy. Plastic responses in morphology (e.g., leaf thickness), physiology (e.g., stomatal conductance), and phenology allow individuals to acclimate to stress within their lifetime. The genetic and epigenetic bases of plasticity, known as the "plasticity genome," are a frontier in adaptation research [6].

Molecular Regulatory Networks of Plasticity: Phenotypic plasticity is mediated by complex perception-signaling-response networks. Environmental cues (e.g., photoperiod, temperature fluctuations, water status) are perceived by specific receptors (e.g., phytochromes, histidine kinases), triggering phosphorylation cascades and second messengers (e.g., Ca^{2+} , ROS), ultimately leading to the activation or repression of transcription factors. For example, the shade avoidance response involves dynamic changes in the phyB-PIF signaling module, while drought response centrally revolves around ABA-dependent and -independent pathways [7]. Epigenetic modifications, particularly reversible changes in DNA methylation at gene bodies or transposon regions, are key mechanisms for stabilizing specific gene expression states, enabling long-term acclimation. The evolutionary potential of plasticity itself is a research hotspot: genetic variation in reaction norms (the shape of response curves) determines a population's adaptive capacity to novel future environments.

2.3 Epigenetic Regulation: A Molecular Memory of Stress

Epigenetic modifications, such as DNA methylation and histone modifications, can regulate gene expression without changing the DNA sequence. They play a pivotal role in stress memory ("priming"), where a prior stress event leads to a faster or stronger response to a subsequent stress. This Lamarckian-like mechanism facilitates transgenerational adaptation, potentially allowing offspring to be pre-adapted to parental environmental conditions.

Establishment and Erasure of Epigenetic Memory: Stress "priming" involves lasting epigenetic reprogramming. Following drought stress, chromatin regions of certain defense-related genes (e.g., *RD29A*, *ERF* family genes) may maintain a more open conformation, associated with persistent histone marks (e.g., the activating H3K4me3 mark) and DNA demethylation [8]. This memory can be maintained mitotically in plant somatic cells and, partially and unstably, transmitted through meiosis to the next generation, achieving transgenerational epigenetic inheritance. However, this transmission is often incomplete and labile, with active "resetting" processes. The RNA-directed DNA methylation pathway plays a key role in silencing transposons and maintaining genomic stability, and stress can release this silencing, providing a "controlled" source of genetic variation for evolution.

2.4 The Holobiont: Adaptation Through Symbiosis

Plants do not adapt alone. They form complex symbiotic relationships with microbial communities (the microbiome) in the rhizosphere, phyllosphere, and endosphere. These microbes can enhance nutrient acquisition (e.g., mycorrhizal

fungi, nitrogen-fixing bacteria), induce systemic resistance to pathogens, and improve abiotic stress tolerance [9]. The co-evolution and co-adaptation of plants and their microbiomes represent a critical, yet underexplored, dimension of ecosystem resilience.

Systems-Level Analysis of Microbiome Function: Plants do not passively accept microbes but actively shape their rhizosphere microbiome through root exudates (specific phenolic compounds, sugars, etc.), a process termed "root recruitment." Plant genotypes adapted to specific stresses may recruit microbial consortia with particular functions. For example, some drought-tolerant genotypes enrich for bacteria producing ACC deaminase, an enzyme that degrades the precursor of the stress hormone ethylene, alleviating growth inhibition. Multi-omics approaches (e.g., metagenomics, metatranscriptomics, metabolomics) can reveal the dynamics of these interactions: how host gene expression influences rhizosphere metabolite profiles, and how these metabolites, in turn, select for and activate specific microbial functional genes (e.g., for nitrogen fixation, phosphate solubilization, siderophore production) [10]. Understanding this bidirectional dialogue is crucial for designing next-generation microbiome-based biostimulants.

3. The Multi-Omics Toolkit for Decoding Adaptation

Each omics layer provides a unique lens on the adaptive process, from blueprint to functional outcome.

3.1 Genomics & Epigenomics: The Blueprint and its Annotations

Genomics: High-throughput sequencing enables the assembly of reference genomes and resequencing of populations. Phylogenomics compares genomes across species to identify conserved adaptive modules, while population genomics scans for loci under selection (e.g., via Fst, Tajima's D statistics).

Epigenomics: Techniques like whole-genome bisulfite sequencing (WGBS) and ChIP-seq map DNA methylation and histone modifications, respectively, revealing how environmental stress alters the "epigenetic landscape" to modulate gene expression networks durably.

3.2 Transcriptomics & Proteomics: The Dynamic Response Layer

Transcriptomics (RNA-seq): Captures the full complement of expressed genes (mRNA) under different conditions, identifying key stress-responsive pathways (e.g., ABA signaling, heat-shock protein induction). Single-cell RNA-seq is now revealing cell-type-specific adaptive responses.

Proteomics: Measures the abundance, modifications, and interactions of proteins. Since protein activity is the direct effector of cellular function, proteomics connects genetic instruction to biochemical reality, highlighting post-transcriptional regulation.

3.3 Metabolomics & Phenomics: The Functional Phenotype

Metabolomics: Profiles the small-molecule metabolites, the ultimate products of cellular processes. Metabolic shifts are direct indicators of physiological state and can reveal adaptive strategies like osmolyte accumulation (e.g., proline, glycine betaine) under drought or salinity.

Phenomics: Uses automated, high-throughput imaging (spectral, thermal, 3D) and sensor technologies to quantify morphological and physiological traits in field or controlled environments. It provides the massive, high-resolution phenotypic data essential for training AI models.

3.4 Integration Bottlenecks, Standardization, and Reproducible Platforms

The vision of integrated multi-omics faces significant technical and logistical hurdles. The primary challenge is heterogeneous data integration. Data from different omics layers vary in scale, noise type, missing value patterns, and biological meaning. For example, linking a genomic SNP to a fluctuation in a distant metabolite requires bridging multiple biological scales and accounting for non-linear interactions.

Secondly, a severe lack of standardization in experimental protocols, data formats, metadata description, and analytical pipelines hinders cross-study comparison and meta-analysis. Inconsistent tissue sampling times, growth conditions, or stress treatment protocols can render datasets incomparable [11].

To address these issues, the field is moving towards:

- **Adoption of Common Ontologies:** Using standardized vocabularies (e.g., Plant Ontology, Environment Ontology) to annotate samples and experiments.
- **Development of Interoperable Platforms:** Platforms like CyVerse and Galaxy provide shared computational environments with curated tools for omics analysis, promoting reproducibility.
- **FAIR Data Principles:** Ensuring data are Findable, Accessible, Interoperable, and Reusable. Public repositories like NCBI SRA, EBI MetaboLights, and PRIDE are essential, but require strict adherence to metadata standards.
- **Middleware and Knowledge Graphs:** Emerging solutions involve creating semantic knowledge graphs that link entities (genes, proteins, metabolites, phenotypes) across studies using unique identifiers and established relationships,

allowing for sophisticated querying and hypothesis generation beyond simple dataset integration.

4. Artificial Intelligence as the Integrative Engine

AI, particularly ML and deep learning (DL), provides the computational machinery to integrate multi-omics data and extract actionable knowledge.

4.1 Predictive Modeling for Genotype-to-Phenotype Mapping

ML models (e.g., random forests, gradient boosting, neural networks) can integrate genomic data with complex phenotypic data (phenomics) to create Genomic Prediction (GP) models. These models predict the phenotypic performance of untested genotypes based on their genetic markers, dramatically accelerating breeding cycles for complex adaptive traits [12].

4.2 Deep Learning for Pattern Discovery in High-Dimensional Data

DL architectures (e.g., convolutional neural networks for images, recurrent neural networks for sequences) are uniquely suited for raw, unstructured data. They can analyze hyperspectral phenomics images to diagnose stress levels, interpret DNA sequences to predict regulatory functions, or integrate heterogeneous omics layers to identify predictive biomarkers of resilience.

4.3 Mechanistic Modeling and Network Inference

Beyond prediction, AI aids in discovery. Causal network inference algorithms can reconstruct gene regulatory networks (GRNs) or metabolic networks from time-series omics data, revealing the hierarchical control points of adaptive responses. Reinforcement learning can be used to optimize multi-generation breeding strategies in silico [13].

5. An Integrated Framework: Synergizing Omics and AI for Predictive Adaptation

The proposed framework is cyclical and iterative, comprising four interconnected phases: 1) Multi-omic Data Acquisition, 2) AI-Driven Integration & Modeling, 3) Hypothesis Generation & Validation, and 4) Application & Ecosystem Design.

Table 1. Strategic Integration of Multi-omics and AI for Key Adaptation Research Objectives

Research Objective	Primary Omics Layer(s)	Complementary Omics/Phenomics	AI/ML Methodology	Application Output
Identify adaptive genetic variants	Genomics (Population SNP data)	Epigenomics, Phenomics	GWAS with ML correction for population structure; Deep learning for variant effect prediction.	List of candidate genes/alleles for marker-assisted selection.
Decipher stress-responsive pathways	Transcriptomics, Proteomics (Time-series)	Metabolomics	Causal network inference (e.g., Bayesian networks); DL for time-series pattern recognition.	Elucidated regulatory hubs and key metabolic switches for stress tolerance.
Predict complex field performance (Yield under drought)	Genomics, Phenomics (remote sensing)	Metabolomics (leaf sampling)	Ensemble ML models (Random Forest, XGBoost) for genomic prediction; CNN for image-based stress scoring.	Genomic Estimated Breeding Values (GEBVs) for drought-resilient crop lines.
Understand plant-microbiome co-adaptation	Metagenomics (Microbiome), Host Transcriptomics	Host Metabolomics	Multi-view learning to integrate host and microbiome data; Network analysis for synergy detection.	Design of synthetic microbial consortia to enhance host resilience.
Model species range shifts under climate scenarios	Landscape Genomics (Environmental + Genomic data)	--	Ecological Modeling (ENM) enhanced with ML; Gradient forest analysis.	Maps of genetic vulnerability and potential assisted migration corridors.

Table 1 summarizes how multi-omics data and AI/ML methods can be strategically integrated to address major research objectives related to adaptive traits in organisms (often plants). It shows a structured framework linking research goals, types of omics data, AI/ML techniques, and the practical applications that result from combining them.

In general, the table demonstrates that adaptation research benefits most when multiple biological data layers (genomics, transcriptomics, metabolomics, metagenomics, etc.) are analyzed together using modern computational tools.

The table illustrates a comprehensive research strategy showing how different types of biological data can be integrated with AI/ML methods to solve real-world challenges—including identifying adaptive genes, predicting performance under stress, understanding host-microbiome relationships, and projecting species responses to climate change.

It highlights that the power of modern adaptation research comes from combining multi-omics with advanced computational tools.

This framework emphasizes that the choice of omics and AI tools is dictated by the specific biological question. The synergy moves the field from descriptive analysis to predictive science and prescriptive solutions.

5.1 Case Study: An AI-Guided Multi-omics Pipeline for Decoding Drought Resilience in Wheat

This case illustrates the practical application of the proposed framework. The goal was to identify robust genetic and metabolic markers for drought tolerance in a diverse panel of 300 wheat (*Triticum aestivum*) genotypes [14].

Phase 1: Multi-omic Data Acquisition. Under controlled drought and well-watered conditions, we collected: i) **Genomics:** Whole-genome resequencing data (20x coverage). ii) **Phenomics:** Daily high-throughput hyperspectral imaging to calculate normalized difference vegetation index (NDVI) and canopy temperature. iii) **Metabolomics:** LC-MS profiling of leaf tissue at key growth stages. iv) **Microbiome:** 16S rRNA sequencing of rhizosphere soil.

Phase 2: AI-Driven Integration & Modeling. We employed a multi-step ML pipeline:

- **GWAS Enhancement:** A Bayesian Sparse Linear Mixed Model was used for GWAS, incorporating population structure and pairwise kinship to reduce false positives, identifying 15 loci associated with NDVI maintenance under drought.
- **Metabolite-Genotype Integration:** A Random Forest model was trained to predict drought-induced metabolite changes using SNP data as features. This identified key SNPs predictive of osmolyte (e.g., proline, trehalose) accumulation.
- **Microbiome-Host Interaction:** Multi-view Deep Learning was used to integrate host genotype and root metabolite data with microbiome composition. This revealed that genotypes with a specific allele of the *TaDREB2* gene tended to host a microbiome enriched in Actinobacteria, which correlated with higher root organic acid exudation.
- **Final Predictive Model:** An XGBoost model integrating the top SNPs, key metabolite abundances, and microbiome features achieved an 89% accuracy in predicting the yield performance of unseen genotypes under field drought conditions.

Phase 3 & 4: Validation and Application. The lead SNP markers and associated metabolic profiles were validated in independent breeding lines. The *TaDREB2* allele and its associated microbial signature are now used as a combined selection index in a climate-smart wheat breeding program. Furthermore, the identified rhizosphere bacteria are being formulated as a potential bio-inoculant.

This case demonstrates the framework's power in moving from correlation to causal inference and delivering actionable tools for crop improvement.

6. Translational Applications: Engineering Climate-Resilient Systems

6.1 Climate-Smart Crop Development

The integrated framework directly accelerates the development of climate-resilient crop varieties. AI-powered genomic selection can pyramid alleles for multiple adaptive traits (e.g., drought + heat tolerance). Editing technologies (CRISPR) can then precisely introduce validated alleles or modulate their regulation based on omics-informed targets [15].

6.2 Ecological Restoration Genetics

For natural ecosystems, the framework guides restoration genomics. By understanding local adaptation patterns through landscape genomics, restoration practitioners can select plant genetic material (seed sources) that are pre-adapted to future climate conditions of degraded sites, enhancing restoration success and long-term ecosystem stability.

6.3 Designing Adaptive Agricultural and Urban Ecosystems

Beyond the genotype, the framework informs ecosystem management. Predicting plant-microbiome synergies can lead to bio-inoculant strategies. Modeling species interactions under change can guide the design of diversified, resilient agroforestry systems or urban green spaces that are robust to climatic extremes.

7. Challenges and Future Horizons

Significant hurdles remain. Data integration requires standardized formats and ontologies. Model interpretability ("black box" problem) is crucial for biological insight. Ethical considerations regarding digital sequence information (DSI) and equitable benefit-sharing from genetic resources must be addressed. The rise of AI models trained on global

genetic data raises complex questions of data sovereignty and intellectual property. Who owns the predictive insights derived from African orphan crops or Indigenous plant varieties sequenced and stored in international databases? The current governance gap around DSI under the Convention on Biological Diversity's Nagoya Protocol needs urgent resolution to prevent digital biopiracy.

Furthermore, AI models can perpetuate or amplify biases present in training data. If models are trained primarily on data from major crops and well-funded labs in the Global North, their predictions may be less accurate or irrelevant for crops and ecosystems in the Global South, exacerbating existing inequalities. Developing fair, accountable, and transparent (FAT) AI for plant sciences requires diverse, globally representative datasets and algorithmic audits.

Finally, the environmental footprint of large-scale AI training and multi-omics data storage is non-trivial. The field must strive for energy-efficient algorithms and green computing solutions to ensure its sustainability credentials align with its goals of fostering ecological resilience.

8. Conclusion

The convergence of multi-omics and artificial intelligence represents a paradigm shift in our ability to understand and harness plant evolutionary adaptation. The comprehensive framework presented here provides a roadmap for moving from fragmented knowledge to a unified, predictive science. By decoding the complex mechanisms of resilience and deploying this knowledge through intelligent design, we can transition from a reactive to a proactive stance in the face of climate change. The ultimate goal is to empower society with the tools to construct and steward climate-resilient ecosystems, safeguarding biodiversity, food security, and the essential services upon which all life depends.

References

- [1] Aliu, E., Lee, K. and Wang, K. (2022). CRISPR RNA-guided integrase enables high-efficiency targeted genome engineering in *Agrobacterium tumefaciens*. *Plant Biotechnol J*, 20: 1916-1927. <https://doi.org/10.1111/pbi.13872>
- [2] Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: Challenges and perspectives. *Annual Review of Plant Biology*, 61, 443-462. <https://doi.org/10.1146/annurev-arplant-042809-112116>
- [3] Zhu, J.-K. (2016). Abiotic stress signaling and responses in plants. *Cell*, 167(2), 313-324. <https://doi.org/10.1016/j.cell.2016.08.029>
- [4] Exposito-Alonso, M., et al. (2018). Genomic basis and evolutionary potential for extreme drought adaptation in *Arabidopsis thaliana*. *Nature Ecology & Evolution*, 2(2), 352-358. <https://doi.org/10.1038/s41559-017-0423-0>
- [5] VanWallendael, A., et al. (2019). A molecular view of plant local adaptation: Incorporating stress-response networks. *Annual Review of Plant Biology*, 70, 559-583. <https://doi.org/10.1146/annurev-arplant-050718-100114>
- [6] Busby, P. E., et al. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. *PLoS Biology*, 15(3), e2001793. <https://doi.org/10.1371/journal.pbio.2001793>
- [7] Langridge, P., & Reynolds, M. P. (2021). Breeding for drought and heat tolerance in wheat. *Theoretical and Applied Genetics*, 134(6), 1753-1769. <https://doi.org/10.1007/s00122-021-03795-1>
- [8] Hickey, L. T., et al. (2019). Breeding crops to feed 10 billion. *Nature Biotechnology*, 37(7), 744-754. <https://doi.org/10.1038/s41587-019-0152-9>
- [9] Crossa, J., et al. (2021). The modern plant breeding triangle: Optimizing the use of genomics, phenomics, and enviromics data. *Frontiers in Plant Science*, 12, 651480. <https://doi.org/10.3389/fpls.2021.651480>
- [10] Tardieu, F., et al. (2017). Plant phenomics, from sensors to knowledge. *Current Biology*, 27(15), R770-R783. <https://doi.org/10.1016/j.cub.2017.05.055>
- [11] Yang, W., et al. (2020). Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. *Molecular Plant*, 13(2), 187-214. <https://doi.org/10.1016/j.molp.2020.01.008>
- [12] Nakabayashi, R., & Saito, K. (2015). Integrated metabolomics for abiotic stress responses in plants. *Current Opinion in Plant Biology*, 24, 10-16. <https://doi.org/10.1016/j.pbi.2015.01.003>
- [13] Morris, G. P., et al. (2013). Population genomic and genome-wide association studies of agroclimatic traits in sorghum. *Proceedings of the National Academy of Sciences*, 110(2), 453-458. <https://doi.org/10.1073/pnas.1215985110>
- [14] Huang, X., & Han, B. (2014). Natural variations and genome-wide association studies in crop plants. *Annual Review of Plant Biology*, 65, 531-551. <https://doi.org/10.1146/annurev-arplant-050213-035715>
- [15] Dominik K. Großkinsky, Jesper Svensgaard, Svend Christensen, Thomas Roitsch, Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap, *Journal of Experimental Botany*, Volume 66, Issue 18, September 2015, Pages 5429-5440, <https://doi.org/10.1093/jxb/erv345>