Neuro-Responsive Farming: Integrating Plant Electrophysiology for Real-Time Crop Decision-Making Systems

Authors

  • Sayma Nasrin Shompa International Islamic University Chittagong, Computer Science and Engineering, Chittagong, Bangladesh Author

DOI:

https://doi.org/10.64229/yg6a6e16

Keywords:

Neuro-Respondent Agriculture, Plant Electrophysiology, Bioelectrical Communication, Smart Farming, AI, Plant-Based Sensor, Real-Time Crop Monitoring

Abstract

Neuro-Answer Cultivation (NRF) introduces an innovative paradigm in accurate agriculture using the internal electrical signals of plants to direct real-time agricultural decisions. Recent discoveries in the plant electrophysiology have shown that plants produce complex bioelectrical patterns in response to environmental signals - functioning of nerve reactions in animals. This study proposes a comprehensive outline that integrates the plant electrophysiological sensor, artificial intelligence and automated control systems to create adaptive response loops for crop management. By explaining voltage changes and electrical chemical signals within plants, NRF systems can autonomize irrigation, nutrient distribution and insect mitigation strategies autonomously adapted. Experimental beliefs show that such systems increase crop yield, conserve resources, and improve plants stress tolerance. It also evaluates technical and biological challenges in paper signal acquisition, noise filtration and system scalability, while shedding the future of sustainable farming highlights the inter -disciplinary coordination of biology, information and agricultural engineering. Traditional farming system often depends on indirect environmental measurements, which themselves look at the congenital signaling capacity of plants. Neuro-Answer Cultivation (NRF) plant shows a paradigm change by taking advantage of electrophysiology-as a real-time reaction mechanism for natural electrical signals that arise in response to environment and physical stimuli. This study suggests how decoding these bioelectrical signals enables crops to directly inform the exact farming systems. By integrating the biocompatible sensor, wireless data acquisition and machine learning algorithms, we establish a structure that combines plant reactions to automated decision -making processes, adapting the delivery of water and nutrients depending on the needs of the real -time plant. The research plant highlights the interrelationship of physiological processes-such as movement, development and signal transmission-and validate the NRF model in both controlled and semi-region situations.

References

[1]Brzezicki, M. A Systematic Review of the Most Recent Concepts in Kinetic Shading Systems with a Focus on Biomimetics: A Motion/Deformation Analysis. Sustainability 2024, 16, 5697.

[2]Balyan, S.; Jangir, H.; Tripathi, S.N.; Tripathi, A.; Jhang, T.; Pandey, P. Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture. Sustainability 2024, 16, 475.

[3]dos Reis, G.A.; Martínez-Burgos, W.J.; Pozzan, R.; Pastrana Puche, Y.; Ocán-Torres, D.; de Queiroz Fonseca Mota, P.; Rodrigues, C.; Lima Serra, J.; Scapini, T.; Karp, S.G.; et al. Comprehensive Review of Microbial Inoculants: Agricultural Applications, Technology Trends in Patents, and Regulatory Frameworks. Sustainability 2024, 16, 8720.

[4]Li, P.; Han, Z.; Chepkorir, D.; Fang, W.; Ma, Y. Effect of Exogenous Jasmonates on Plant Adaptation to Cold Stress: A Comprehensive Study Based on a Systematic Review with a Focus on Sustainability. Sustainability 2024, 16, 10654.

[5]Rogo, U.; Viviani, A.; Pugliesi, C.; Fambrini, M.; Usai, G.; Castellacci, M.; Simoni, S. Improving Crop Tolerance to Abiotic Stress for Sustainable Agriculture: Progress in Manipulating Ascorbic Acid Metabolism via Genome Editing. Sustainability 2025, 17, 719.

[6]Bhatla, S.C.; Lal, M.A. Plant Movements. In Plant Physiology, Development and Metabolism; Springer: Singapore, 2023; pp. 641-659.

[7]Nature Communications.Qin, K.; Tang, W.; Zong, H.; Guo, X.; Xu, H.; Zhong, Y.; Wang, Y.; Sheng, Q.; Yang, H.; Zou, J. Parthenocissus Inspired Soft Climbing Robots. Sci. Adv. 2025, 11, eadt9284.

[8]Burdon-Sanderson, J.S. Note on the Electrical Phenomena Which AccompanyIrritation of the Leaf of Dionæa muscipula. Proc. Roy. Soc. Lond. 1873, 21, 495-496.

[9]Tills, O.; Ibbini, Z.; Spicer, J.I. Bioimaging and-the Future of Whole-Organismal Developmental Physiology. Comp. Biochem. Physiol. Mol. Integr. Physiol. 2024, 300, 111783.

[10]Wang, Q. Understanding Plant Movement: From Kinematics to Machine Learning. PhD Thesis, Università degli Studi di Padova, Padova, Italy, 2024.

[11]de Toledo, G.R.; Parise, A.G.; Simmi, F.Z.; Costa, A.V.; Senko, L.G.; Debono, M.-W.; Souza, G.M. Plant Electrome: The Electrical Dimension of Plant Life. Theor. Exp. Plant Physiol. 2019, 31, 21-46.

[12]Reissig, G.N.; de Carvalho Oliveira, T.F.; Parise, A.G.; Posso, D.A.; Souza, G.M. An Electrifying View into the Life of Plants: The Plant Electrome. Front. Young Minds 2024, 12, 1400420.

[13]Kisnieriene, V.; Lapeikaite, I.; Pupkis, V.; Beilby, M.J. Modeling the Action Potential in Characeae Nitellopsis obtusa: Effect of Saline Stress. Front. Plant Sci. 2019, 10, 82.

[14]Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. Guest Editorial: Sustainable and Intelligent Precision Agriculture. IEEE Trans. Ind. Inform. 2021, 17, 4318-4321.

[15]Sai, K.; Sood, N.; Saini, I. Classification of Various Nutrient Deficiencies in Tomato Plants through Electrophysiological Signal Decomposition and Sample Space Reduction. Plant Physiol. Biochem. 2022, 186, 266-278.

[16]Kim, H.N.; Seok, Y.J.; Park, G.M.; Vyavahare, G.; Park, J.H. Monitoring of Plant-Induced Electrical Signal of Pepper Plants (Capsicum annuum L.) According to Urea Fertilizer Application. Sci. Rep. 2023, 13, 291.

[17]Bhadra, N.; Chatterjee, S.K.; Das, S. Multiclass Classification of Environmental Chemical Stimuli from Unbalanced Plant Electrophysiological Data. PLoS ONE 2023, 18, e0285321.

[18]Buss, E.; Aust, T.; Wahby, M.; Rabbel, T.-L.; Kernbach, S.; Hamann, H. Stimulus Classification with Electrical Potential and Impedance of Living Plants: Comparing Discriminant Analysis and Deep-Learning Methods. Bioinspir. Biomim. 2023, 18, 025003.

[19]Cattani, A.; De Riedmatten, L.; Roulet, J.; Smit-Sadki, T.; Alfonso, E.; Kurenda, A.; Graeff, M.; Remolif, E.; Rienth, M. Water Status Assessment in Grapevines Using Plant Electrophysiology: This Article Is Published in Cooperation with the XVth International Terroir Congress, 18-22 November 2024, Mendoza, Argentina. Guest Editors: Federico Berli, Jorge Prieto and Martín Fanzone. OENO One 2024, 58, 4.

[20]de Toledo, G.R.; Reissig, G.N.; Senko, L.G.; Pereira, D.R.; da Silva, A.F.; Souza, G.M. Common Bean under Different Water Availability Reveals Classifiable Stimuli-Specific Signatures in Plant Electrome. Plant Signal. Behav. 2024, 19, 2333144.

[21]Qi, J.; Liu, C.; Wang, Q.; Shi, Y.; Xia, X.; Wang, H.; Sun, L.; Men, H. Clivia Biosensor: Soil Moisture Identification Based on Electrophysiology Signals with Deep Learning. Biosens. Bioelectron. 2024, 262, 116525.

[22]Simmi, F.Z.; Dallagnol, L.J.; Almeida, R.O.; da Rosa Dorneles, K.; Souza, G.M. Barley Systemic Bioelectrical Changes Detect Pathogenic Infection Days before the First Disease Symptoms. Comput. Electron. Agric. 2023, 209, 107832.

[23]Ghasemi, E.; Ebrahimie, E.; Niazi, A. Machine Learning for Early Detection of Plant Viruses: Analyzing Post-Infection Electrical Signal Patterns. Smart Agric. Technol. 2024, 9, 100668.

[24]Kurenda, A.; Jenni, D.; Lecci, S.; Buchholz, A. Bringing Light into the Dark—Plant Electrophysiological Monitoring of Root Knot Nematode Infestation and Real-Time Nematicide Efficacy. J. Pest Sci. 2024, 98, 493-507.

[25]Iosip, A.-L.; Scherzer, S.; Bauer, S.; Becker, D.; Krischke, M.; Al-Rasheid, K.A.; Schultz, J.; Kreuzer, I.; Hedrich, R. Dyscalculia, a Venus Flytrap Mutant without the Ability to Count Action Potentials. Curr. Biol. 2023, 33, 589-596.e5.

[26]Scherzer, S.; Böhm, J.; Huang, S.; Iosip, A.L.; Kreuzer, I.; Becker, D.; Heckmann, M.; Al-Rasheid, K.A.; Dreyer, I.; Hedrich, R. A Unique Inventory of Ion Transporters Poises the Venus Flytrap to Fast-Propagating Action Potentials and Calcium Waves. Curr. Biol. 2022, 32, 4255-4263.e5.

[27]Böhm, J.; Scherzer, S.; Krol, E.; Kreuzer, I.; von Meyer, K.; Lorey, C.; Mueller, T.D.; Shabala, L.; Monte, I.; Solano, R.; et al. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake. Curr. Biol. 2016, 26, 286-295.

[28]Roblin, G.; Moyen, C.; Fleurat-Lessard, P.; Dédaldéchamp, F. Rapid Osmocontractile Response of Motor Cells of Mimosa pudica Pulvini Induced by Short Light Signals. Photochem. Photobiol. 2025, 101, 728-745.

[29]Stolarz, M.; Trębacz, K. Spontaneous Rapid Leaf Movements and Action Potentials in Mimosa pudica L. Physiol. Plant. 2021, 173, 1882-1888.

[30]Mahta, J.; Spangaro, A.; Lenartowicz, M.; Mattiazzi Usaj, M. From Pixels to Insights: Machine Learning and Deep Learning for Bioimage Analysis. BioEssays 2024, 46, 2300114.

Downloads

Published

2025-08-13

Issue

Section

Articles