Genomic Signatures of Environmental Adaptation in Pakistani Flora: Nutrient Use Efficiency Under Drought and Submergence Stress

Authors

  • Muhammad Uklan Department of Environmental Stress Genomics, University of Agriculture and Biotechnology, Islamabad (UABI), Islamabad, Pakistan Author

DOI:

https://doi.org/10.64229/e9fdsb74

Keywords:

Abiotic Stress, Nutrient Use Efficiency, Genomic Adaptation, Drought Tolerance, Submergence Tolerance, Transcription Factors, Pakistani Flora, Climate-Resilient Crops, Omics Technologies, Sustainable Agriculture

Abstract

Pakistan's unique agro-climatic conditions, characterized by high temperatures, water scarcity, and periodic flooding, have created diverse environmental pressures on its native flora. This comprehensive review examines the genomic features and molecular mechanisms underlying drought and submergence tolerance in Pakistani plant species, with particular emphasis on nutrient use efficiency (NUE). Through multi-faceted analysis integrating transcriptomic studies, genome-wide associations, proteomic profiling, and physiological investigations, we identify key genetic determinants that enable plants to maintain nutrient homeostasis under abiotic stress conditions. Extended research on Pakistani cotton varieties reveals complex stress-responsive transcription factor networks (e.g., DREB, HSP, GhWRKY41) that coordinate both stress tolerance and nutrient acquisition pathways. Comprehensive studies on rice cultivars demonstrate adaptive variation in genes regulating root architecture, nutrient transporters, and hormone signaling under fluctuating water availability. The integration of conventional breeding with next-generation genomic technologies is accelerating the development of climate-resilient crops with improved nutrient efficiency for sustainable agriculture. This synthesis provides valuable genomic insights and practical frameworks for future crop improvement strategies addressing climate change challenges, with specific implications for agricultural sustainability in South Asia.

Author Biography

  • Muhammad Uklan, Department of Environmental Stress Genomics, University of Agriculture and Biotechnology, Islamabad (UABI), Islamabad, Pakistan

    Department of Environmental Stress Genomics

References

[1]Högy P, Kottmann L, Schmid I, Fangmeier A. Heat, wheat and CO2: The relevance of timing and the mode of temperature stress on biomass and yield. J Agro Crop Sci. 2019; 205: 608-615. https://doi.org/10.1111/jac.12345

[2]Chen, K.-H., Hwang, C., Chang, L.-C., Tsai, J.-P., Yeh, T.-C. J., Cheng, C.-C., et al. (2020). Measuring aquifer specific yields with absolute gravimetry: Result in the Choushui River Alluvial Fan and Mingchu Basin, central Taiwan. Water Resources Research, 56, e2020WR027261. https://doi.org/10.1029/2020WR027261

[3]de Pádua, J.A.R., Rocha, L.F., Brandão, M.M. et al. Title: priority areas for genetic conservation of Eremanthus erythropappus (DC.) MacLeish in Brazil. Genet Resour Crop Evol 68, 2483-2494 (2021). https://doi.org/10.1007/s10722-021-01144-1

[4]Patro, H., Reddy, K. R., Lokhande, S. B., & Walker, T. (2020). Photosynthesis and morphological responses of rice cultivars to seedling stage soil N stress. Journal of Plant Nutrition, 44(8), 1085-1094. https://doi.org/10.1080/01904167.2020.1862198

[5]Dahlin, A.S., Rusinamhodzi, L. Yield and labor relations of sustainable intensification options for smallholder farmers in sub‐Saharan Africa. A meta‐analysis. Agron. Sustain. Dev. 39, 32 (2019). https://doi.org/10.1007/s13593-019-0575-1

[6]Svirčev, Z., Dulić, T., Obreht, I. et al. Cyanobacteria and loess-an underestimated interaction. Plant Soil 439, 293-308 (2019). https://doi.org/10.1007/s11104-019-04048-3

[7]CHEN, L., SUN, H., KONG, J. et al. Integrated transcriptome and proteome analysis reveals complex regulatory mechanism of cotton in response to salt stress. J Cotton Res 4, 11 (2021). https://doi.org/10.1186/s42397-021-00085-5

[8]Palà, E., Bustamante, A., Jolkkonen, J. et al. Blood-based biomarkers and stem cell therapy in human stroke: a systematic review. Mol Biol Rep 47, 6247-6258 (2020). https://doi.org/10.1007/s11033-020-05627-9

[9]Amthor, J. S. (2001). Effects of atmospheric CO2 concentration on wheat yield: Review of results from experiments using various approaches to control CO2 concentration. Field Crops Research, 73, 1-34. https://doi.org/10.1016/S0378-4290(01)00179-4

[10]Arp, W. J. (1991). Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell and Environment, 14, 869-75. https://doi.org/10.1111/j.1365-3040.1991.tb01450.x

[11]Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., & García-Herrera, R. (2011). The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220-224. https://doi.org/10.1126/science.1201224

[12]Bourgault, M., James, A. T., & Dreccer, M. F. (2017). Pot size matters revisited: Does container size affect the response to elevated CO2 and our ability to detect genotypic variability in this response in wheat? Functional Plant Biology, 44, 52-61. https://doi.org/10.1071/FP16047

[13]Brisson, N., Gate, P., Gouache, D., Charmet, G., Oury, F. X., & Huard, F. (2010). Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research, 119, 201-212. https://doi.org/10.1016/j.fcr.2010.07.012

[14]Brocklehurst, P. A. (1977). Factors controlling grain weight in wheat. Nature, 266, 348-9. https://doi.org/10.1038/266348a0

[15]Dias de Oliveira, E., Bramley, H., Siddique, K. H. M., Henty, S., Berger, J., & Palta, J. A. (2013). Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat? Functional Plant Biology, 40, 160-171. https://doi.org/10.1071/FP12206

[16]Franzaring, J., Holz, I., & Fangmeier, A. (2008). Different responses of Molinia caerulea plants from three origins to CO2 enrichment and nutrient supply. Acta Oecologica, 33, 176-187. https://doi.org/10.1016/j.actao.2007.10.006

[17]Ingvordsen, C. H., Lyngkjaer, M. F., Peltonen-Sainio, P., Mikkelsen, T. N., Stockmarr, A., & Jorgensen, R. B. (2018). How a 10-day heatwave impacts barley grain yield when superimposed onto future levels of temperature and CO2 as single and combined factors. Agriculture, Ecosystems and Environment, 259, 45-52. https://doi.org/10.1016/j.agee.2018.01.025

[18]Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany, 60, 2859-2876. https://doi.org/10.1093/jxb/erp096

Downloads

Published

2025-12-23

Issue

Section

Articles

How to Cite

Muhammad Uklan. (2025). Genomic Signatures of Environmental Adaptation in Pakistani Flora: Nutrient Use Efficiency Under Drought and Submergence Stress. Plant Adaptation Frontiers, 1(2), 1-9. https://doi.org/10.64229/e9fdsb74